
The perils of legacy
modernization
An ebook for navigating complex
modernization choices

Ever heard of the Anna Karenina principle? Leo Tolstoy’s

Russian classic begins by stating that, “All happy families are

alike; each unhappy family is unhappy in its own way.”

If you have legacy IT and have looked into issues and

solutions that come along with it, you may find it interesting

that the world of legacy modernization initiatives inversely

reflects this principle and states that all modernization

failures are alike, while success is a combination of unique

ingredients.

In this article we look at the generality of legacy IT

modernization failures, provide an overview of common

modernization approaches and share the experience

from one of our clients who attempted a mainframe

modernization five times before it was successfully

completed. We also outline some considerations on what

can help organizations succeed where others have failed.

The perils of legacy modernization | luxoft.com 2

https://www.luxoft.com/

Legacy is expensive to run and
expensive to modernize

IT operations and maintenance are expensive.
They account for around 75% of the entire IT spend
worldwide. Normally, the most expensive systems to
support are the oldest ones, and mainframe systems
created 20–50 years ago would very likely be at
the top of the list. However, they continue running
despite growing run and change costs — at least until
they fail and don’t recover themselves.

These reasons make legacy systems in general (and
old mainframe monoliths in particular) a dangerous
and expensive part of an organization’s technology
landscape with constantly growing operations cost
and the chance of failure increasing every day, forcing
IT managers to conduct modernization initiatives.

If you could replace or fix your legacy system without
much effort and risk, you’ve probably done it already.
However, it’s often a very challenging and complex
endeavor, resulting in modernization projects accounting
for almost a third of the entire development and
enhancement spend worldwide. Twenty-nine percent
of this spending is wasted on failed efforts. The 2021
Mainframe Modernization Business Barometer Report
found that 77% of organizations have started a legacy
system modernization project but failed to complete it.
If you don’t want to end up in this category, you need
to honestly assess your modernization strategy for
general failure attributes, and proceed to a thorough
analysis of modernization scope and solution space.

Unclear
understanding of

modernization scope

High expectations of chosen
approach and reliance on a

‘magic solution’

Underestimation
of effort

C-suite and
IT leadership
disconnect

What are the similarities of all modernization failures:

In the next sections we’ll try to describe how modernization projects typically end up with these attributes.
We’ll start with an explanation of our inside-view on general modernization approaches.

The perils of legacy modernization | luxoft.com 3

https://www.luxoft.com/

• Retire — an approach that simply lets you shut your
application down. Best case scenario, this comes
as the result of an application portfolio analysis
that outlines duplication of functionality or its
obsoleteness. Do not forget to retain the data you
might need and think about how you can access it.

• Retain — your mainframe still does the job, so keep
the application and instead focus on modernizing
the peripherals: Modernize your legacy landscape
with CI/CD, web-enable your UI, introduce REST API
integration points. This usually comes with extra
vendor lock-in that adds to your current spend.

It’s often not an option for non-IBM legacy platforms
as the toolset to support modernized Software
Development Lifecycle there simply couldn’t exist, and
even with mainstream legacy platforms some of your
components would be doomed to collect further dust.

• Replace — getting a COTS product from a trusted
vendor with support and tailoring services is an
excellent option. If this was possible for your business,
it’s probably already been done. The likes of what is
left out usually includes custom-made solutions with
company IPs. Even if there’s a good candidate for
replacement, business requirements recovery and
aggregation is often a multiyear saga with business
process adjustment battles, pulling other applications
in, compromises between business and product
tailoring capabilities and eventually turning legacy

Modernization approaches and pitfalls

modernization into a global business initiative. Worth
considering, but IT leadership should remember this will
be business driven with an unpredictable timeline and
outcome.

• Rewrite — same as Replace, but with your own
solution, no compromises required. Rebuild your
application following modern architectural guidelines
and see it become cloud native. It requires a complete
recovery of what your application functionally is, and
reintegration with the ecosystem once ready. The
cleanest approach of all. However, complexity and costs
grow exponentially with the size of the application. It
might be very expensive if your application is medium
to large, but it’s the best option for smaller ones.

• Rehost — also known as lift and shift. Take all your
legacy technology and port it to a new platform using
some COTS environment emulation solution. The
most popular solution with a few heavy-hitter product
vendors out there. Kicks the can down the road, you get
a new vendor lock-in, but it’s the fastest option with the
least amount of risk, effort, change and learning for the
current operations team. Allows you to decommission
your legacy hardware and keep something running
until you Replace or Rewrite it, unless you decide to
keep it Rehosted, because COBOL is not that bad,
and applications written in COBOL are often rather
ergonomic. Most of the solutions allow some level of
integration with modern technologies. Where’s the
catch?

Modernization methodology fundamentals state that there are several
generalized approaches which are usually considered legacy modernization
treatments — also commonly known as the R-treatments. Each of them
works perfectly for a particular subset of cases, but they don’t necessarily
integrate easily with the others, and of course, each comes at its own price.
We have laid out our thoughts on these approaches, where they are best
applicable and where often overlooked caveats are.

The perils of legacy modernization | luxoft.com 4

https://www.luxoft.com/

Well, some legacy components are not in the scope of
emulation products: Reporting systems, assembler or
other corner-case languages, CASE tools (Computer
Aided Software Engineering code generators, popular
in the early 1990s), for example. A lot of Rehost
vendors specialize in a particular technology, provide
different support for cloud enablement models and
use different runtime licensing. If your technologies are
mainstream (such as commonly used IBM products)
you can proceed with few risks and a high chance of
one vendor covering all. But, as soon as you need to
combine solutions your risk grows exponentially.

While all product vendors support only their solutions,
an integrator needs to step up and take responsibility
for the end-to-end functional readiness; including
integration, adequate test coverage with extensive
automation, project management and deployment
models. Also, some vendors don’t have the capacity
to support their product tailoring for you at a scale
the rest of the project needs. All of the above is why,
when you engage to Rehost, you need a delivery/
integration partner with nerves of steel to get all the
parts together and delivered on time. Most emulation
solutions come with proprietary runtime license fees.

Lastly, remember that the emulation layer (even if
supported by a trusted vendor) is another layer of
complication for your application. This should be taken
into account if you have performance considerations.
Some things just won’t work in an emulated
environment at the scale you may need.

• Rearchitect — leverage automated conversion tools
to reuse all legacy components of your application by
transforming them to a modern technology stack. The key
here is the transformation of your business logic from a
legacy language to Java, green screens to web pages, batch
scripts to modern scripting. These transformation tools
allow for some level of refactoring on the fly, and with
serious revision of business logic during transformation
you can even bring meaningful names to your entities and
attributes. This takes a long time, yet you’re still going to
end up with COBOL written in Java (so-called “JOBOL”).

On the other hand, the Rearchitect approach is invaluable
when converting metadata such as green screen definition,
data dictionary and properties to the target technology
format. Also, automatic conversion, or transformation,
engines have a valuable subproduct that is used in
application assessments — they provide a full blueprint of
your application with component breakdown, dependency
analysis reports and the like. Sometimes these can even
guide your Rewrite with some tools providing business rules
mining capabilities. The drawbacks are similar to Rehost:
Vendors are rarely able to support all required technologies,
though some are ready to try and stretch their capabilities
beyond operating their existing offering (be ready to
become their guinea pig). Plus there are performance
concerns (native compilation vs. managed code, memory
management paradigm adaptation), and more risk (not
exactly a lift and shift). Test automation is vital with any
automatic acceleration, as every transformation engine
tweak results in the potential for fundamental or local
regression with a need for a round of complete retest.

The perils of legacy modernization | luxoft.com 5

https://www.luxoft.com/

And again, while the resultant product will technically
be in Java, a regular Java developer might refuse to
accept it as Java, as it is still COBOL in Java syntax.
So, SME COBOL developers will not understand the
code anymore, and new Java developers might not
understand it either — quite a conundrum. A lot of
clients pull the plug on the Rearchitect approach down
the road because the timeline, cost and complexity
don’t meet initial expectations.

• Reengineer — a combination of all. An art of
compromise. If no other treatment worked for you on
its own, this will because all technical challenges are
solvable with the right approach.

A typical scenario when modernizing one legacy
component means needing to upgrade other
interconnecting components, which may also be
legacy, but of a different flavor, with a different
nature of missing parts, and with a different solution
space. Reengineering brings the greater flexibility of
a Rewrite together with the acceleration of Rehost
and Rearchitect.

The caveat here is that typically, other approaches
are single tool centric, whereas this approach is never
the silver bullet that everyone is after. Unfortunately,
Reengineering can be more expensive than lift and
shift approaches. It is easier to believe in alternatives,
and Reengineering is usually considered only when
you’re backed against the wall with several previous
unsuccessful attempts. But everything comes at a
price, and an early decision to Reengineer usually
means saving on failures.

Finally, finding a tool-agnostic partner that is able to
identify all the ingredients of your success with this
approach is a challenge.

The next section tells the story of a representative
modernization case where the client tried a variety
of options and spent 20 years failing, before finding
the approach that worked. Luxoft saw the situation
evolving and took an active role in the successful
outcome. We believe there are good lessons to be
learned for future mainframe migrations.

The perils of legacy modernization | luxoft.com 6

https://www.luxoft.com/

To provide a better understanding of how such
failures happen and how to overcome them, we would
like to tell you the story of one of our projects.

Our Fortune 500 client widely used mainframe in
the past. Their early 21st century IT TCO reduction
strategy included the decommissioning of their
mainframe hosting data center and moving it to lower
cost locations in the U.S., while also modernizing
infrastructure technologies for lower cost operations.

By the time most applications were migrated away,
one of the last systems residing on the mainframe
was an in-house developed mission-critical COBOL/
IMS application with very complex architecture and
supported functionality. The inability to migrate it was
holding the entire data center transition hostage. At
the same time, for over a decade this system had been
pending serious functionality extension for a new
customer product line with legacy limitations making
further application evolution nearly impossible.

Historically, there had been several attempts to give
this system a new life, most of which were business-

A client went through every option
while trying to migrate from mainframe

Case study

driven. It started with a partial Replace attempt in the
late 1990s, a complete Replace was not possible due
to the company’s IP embedded into the code — which
no other alternative products had — and ultimately
it failed because of back-integration complexity.
Then Retain was considered in the early 2000s, with
web-enablement that failed because of an inability
to technically drive this complicated code surgery
in-house. A full Rewrite was then undertaken in the
mid-2000s, that ended with the creation of a side
application to support a few new business processes,
which still depended on interconnection with the
legacy application. Finally, a major take on a full Rewrite
started in the early 2010s that unfortunately — being
based on the need to extend existing functionality,
generalize and transform it to support newer ways of
doing business at the company — had not led to the
application’s migration to a new platform within
4 years. This is when the application had clearly
become a top IT problem because the data center was
no longer going to host it.

When IT took the lead of application modernization in
2014, they faced the following challenges:

High cost of potential
production defects

Lack of legacy application
experts (most of them were

laid off or retired by that time)

No end-user impact
was acceptable

Application business
complexity

Unclear vision of migration scope
(components, stakeholders,

non-functional requirements)

Application technology
complexity

The perils of legacy modernization | luxoft.com 7

https://www.luxoft.com/

Not all of the above challenges were clearly identified
during the initial assessment. While assessing the
solution space, the client’s IT organization considered
Rehost but wanted to modernize the technology stack,
and chose to pursue a Rearchitect approach. A code
transformation proposal by a chosen vendor was
looking very promising with a commitment of a 12
month ‘turnkey’ project to be executed by the vendor.
On paper, this looked rather straightforward from the
vendor’s perspective: COBOL is transformed to C++
(the language chosen by the client for performance
considerations), green screens remain unchanged (to
support extensive screen pumper-scraper automation
used by the business), IMS DB migrates to MS SQL
(preferred RDBMS vendor by the client).

One year into this project, the client invited Luxoft to
consult on QA estimations. It appeared that an initial
disconnect on the required migration effort had led to a
chain of false assumptions and commitments, resulting
in a severe underestimation of the overall scope. All
delays (QA involvement in particular) were considered
as final efforts to complete the project. Eventually,
our involvement helped take the application over the
line. However, this was only possible as a result of the
gradual introduction of our capabilities and progress
transparency, one step at a time:

1. We started with estimating 15,000 test cases of
medium and high complexity as a full system
test coverage, and proposed a few test strategy
alternatives that allowed for optimization of test
effort. Our client gave us lead on test design and test
automation.

2. After it was clear that we’d find more functional
and performance defects than the transformation
services provider could fix, we proposed our

involvement in development activities and started
fixing defects.

3. It was obvious that the initial, proposed approach
from the transformation services provider was
underestimated from a technical perspective:
The proprietary runtime libraries required for
the transformed code were experiencing serious
performance hits, while fixing the IMS emulation
on top of RDBMS to function properly would
require a complete redesign. We proposed
a whole new solution for migration and took
over development leadership. Our solution was
based on keeping business logic unchanged to
eliminate functional risks with code transformation
(Rehosting it), while picking up the DB emulation
development at a scale that the project required
(Rearchitecting it). The scope had additionally
been extended to convert batch (Rearchitect), as
this had been completely omitted from the initial
body of work for the transformation services
provider. Finally, a need to drive Rewrite/Replace/
Rehost of other peripheral legacy application
subcomponents (reporting, security, missing code,
third-party utilities, etc.) had clearly transformed
our approach to a Reengineer treatment.

4. Over time we started supporting the customer
from integration and infrastructure perspectives.

5. Eventually we took control of the entire application
migration (we were helping the customer up to this
point) and we were asked to commit to a successful
production delivery on a fixed price basis.

The mainframe was decommissioned after the
migrated application had been implemented and in
production for 2 weeks.

The perils of legacy modernization | luxoft.com 8

https://www.luxoft.com/

Apart from our delivery capabilities, what made the
Luxoft Reengineer approach work? What is behind
our solution?

Here is a quick outline of the legacy application
itself and the approach from technology and
methodology perspectives:

Legacy modernization complexity is best described
by application statistics that picture it as a black box:

• 2M COBOL SLOC

• 200 green screens

• 200 batch jobs with 16 hours
of heavy batch every day

• 1300 IMS segment types

• 60 TPS (read-write)
throughput

• 40 external interfaces

• OS: Migrated from zOS to RHEL

• COBOL: Migrated all business logic as is, using
GnuCOBOL compiler for Linux

• JCL and JES2: Auto-transformed JCL to Python
(including IBM utilities) and created a Batch
Framework with support of resilient output
management capabilities

• IMS DB: Implemented IMSDB-to-SQL Adapter
Layer and migrated data to RDBMS (MS SQL)

• IMS DC: Implemented transaction management
layer, reused green screen GUI (TE3270, per
customer request)

• Performance: Optimized performance by
means of GnuCOBOL compiler optimization,
application caching, DB performance
optimization, business logic optimization

• Reporting: Migrated IBM CMOD from zOS to Win

• Other languages: Rewrote REXX to Python,
Assembler to C/C++

• Other COTS: Migrated Syncsort, IBM MQ to new
platform and back integrated to the application

• Monitoring: Established Splunk integration and
created performance monitoring dashboards

• DevOps: Introduced robust CI/CD pipeline that
involved Jenkins, Ansible, Kubernetes, Openshift,
Terraform, Splunk, Grafana and for QA - HP QC,
HP UFT, Python, Load Runner, Metabase

1. From the technology point of
view, our solution involved:

The perils of legacy modernization | luxoft.com 9

https://www.luxoft.com/

1. We delivered functional readiness — migrated
the application to the new platform and ensured
it was functioning properly. This involved:

• Scope: Full migration scope definition,
including inventory and engagement with all
external stakeholders (~40 interfaces, ~20 user
type groups/programs worldwide)

• Construction: POC, infrastructure, CI/CD and
development activities related to migrated
functionality enablement

• QA: Extensive test automation across several
environment regions

2. Then we focused on resilience —
ensured that the system was functional
and performant under load. This involved:

• Scope: Non-functional requirements
gathering and workload profile definition

• Construction: POC, infrastructure, CI/
CD and development activities related to
migrated functionality optimization

• QA: Test Automation Suite extension
for load, concurrency and performance
testing

• Support: Live Monitoring Solution for key
application components

3. After successful production enablement,
we provided post-production hyper care
— ensuring the application was resilient in
production in a 24/7 mode.

Finally, a major part of the success was the delivery
excellence that had to be a primary ingredient for
a complex journey like this. We tend to believe
that modernization is full-scale engineering,
not just integration of accelerating solutions.
Therefore, best engineering practices are a must
— including technology agnostic flexibility, robust
delivery processes and reporting transparency.
We conducted intermediate results report-outs
and demos that brought reliability and faith in
the positive outcome of our endeavor. And with
DevOps practices introduced along the way, the
application was finally ready to be integrated (with
other applications) and be built upon. After 20
years of modernization attempts, the right, custom
approach finally proved that every problem has a
solution, and we’re happy to be a part of it.

2. From the methodology point of view, our
migration strategy included three steps:

The perils of legacy modernization | luxoft.com 10

https://www.luxoft.com/

As mentioned earlier, if you haven’t migrated from a
legacy system yet, then you’ve either fixed the legacy part
of it and live with a modern, reliable mainframe that is
fit for purpose, or your case has been too complicated
to finish or even try. The potential risks to the business
may be intolerable, you may have limited budgets,
extreme technical complexity, a tight timeline, a lack of
understanding of what is under the hood of the system or
the migration approach or all of the above.

If you’re about to start your migration journey and have
even selected the best option for your case, make sure you
have thought about, and have acceptable answers for, the
questions below. Not all of them are going to be relevant
to your case, but these questions are crucial and often
overlooked during the early stages of migration:

• Do you clearly see your application development/sunset
strategy for the next decade?

• Do you have a clear definition of done for your
modernization?

• Are you investing enough time and budget into upfront
solutioning and a solid PoC before committing to one
option?

• Does your application have performance considerations?
Will the chosen approach meet your requirements?

What to consider
if you’re modernizing

• Do you completely understand the consequences
of your technology fundamentals paradigm shift
— such as procedural to object-oriented business
logic, hierarchical to relational data storage and
access, transactional to event-driven processing,
batch to microservice operations, local to network
storage, workload and traffic footprint going to
cloud, security concepts revision?

• When will you start transformation of your DevOps
and run processes? How fast will you need to be
able to deliver post-migration? How much training
is needed to run a modernized application?

• Do you have a fallback plan in case things go
wrong once live?

• How expensive and time-consuming will it be to
maintain your target solution in 5–10 years?

• What will you do if the selected option doesn’t
work? Is there a plan B? C?

• Do you have a contingency plan if the company IT
strategy changes in a couple years?

• Who will take care of the migration of side
activities — performance testing, NFR testing,
integration with external systems, etc.?

The perils of legacy modernization | luxoft.com 11

https://www.luxoft.com/

• In cases of automatic migration — will the vendor
be capable of reconciling the migrated logic and fix
defects in the new system?

• Does your vendor understand your business and the
consequences of potential outages?

• If you’re introducing a vendor solution, how aware
are you of their product development roadmap? How
much will their proprietary licensing cost in a decade?

• Do you have an integrator partner, or are you relying
on a turnkey service from the migration-solution
product vendor?

• Do you have a change management strategy for your
application to be adjusted in parallel with migration
activities?

• Does going to the cloud for you mean moving your
data center into the sky, or are you considering cloud-
ready solutions that unlock elasticity and other TCO
optimization instruments? Have these considerations
been backed by a business case and is it worth the
effort?

• How are you planning to assure quality of the migrated
product? Do you know what is good enough? Do you
have a well thought through acceptance strategy?

• Is the business community backing your modernization
plans? Are there any compromises that need to be
agreed to with the business community?

We hope these questions help you see a clearer picture,
save budget and enjoy your modernization journey.
These projects are always a one-off if a complete
success.

The perils of legacy modernization | luxoft.com 12

https://www.luxoft.com/

About Luxoft
Luxoft is the design, data and development arm of DXC Technology, providing bespoke, end-to-end technology solutions
for mission-critical systems, products and services. We help create data-fueled organizations, solving complex operational,
technological and strategic challenges. Our passion is building resilient businesses, while generating new business channels
and revenue streams, exceptional user experiences and modernized operations at scale.

luxoft.com

We’ve got lots to discuss

About the author

Clients come to Luxoft when they need to migrate a complex system that is critical for their day-to-
day business, while keeping risks to a minimum. With more than 20 years of mainframe sustaining and
migration experience, and a core pool of top-class engineers fluent in both legacy and modern technologies
including cloud, QA and DevOps, we’ve helped the world’s largest enterprises design and successfully
accomplish custom/hybrid migrations where standard ways haven’t worked.

20+ years in IT, driving long-term customer engagements as well as quick solution
deliveries with main focus on legacy application/infrastructure modernization landscape
and other digital enablement initiatives. Hands-on software development attitude with
ability to provide leadership to large distributed high velocity engineering teams.

11+ years in IT, 6.5 in Financial Services. Worked in Russia, Poland, US and the UK. Specializes
in defining, setting up and leading global delivery engagements split between onshore
and offshore locations. Proposes and implements effective software delivery outsourcing
solutions to address the needs and goals of Financial Services clients. Has a background in
hands-on management. PMP, Prince2 and PMI-ACP certified. Passed CFA level 1 exam.

Ivan Aptekarev
Chief Architect, Cross-Industry Solutions
Linkedin profile

Alexey Zagorodniy
Director, Engineering Solutions
Linkedin profile

© 2022 Luxoft, A DXC Technology Company. All rights reserved.

https://www.luxoft.com/
https://www.luxoft.com/contact_form/
https://www.linkedin.com/in/ivan-aptekarev-ba568190
https://www.linkedin.com/in/azagorodniy/

