
Answering Single
Page Application
Challenges
with Micro Front-End
Architecture

Luis Cameroon

Contents

Introduction									 3

How Do Micro Front-End and

Single Page Application Monoliths Differ?				 4

Problems with Front-End Monolith					 5

Why Micro Front-Ends Matter						 6

Benefits of Micro Front-Ends						 7

Which Technique Is Best for Micro Front-End Integration?	 8

Considering Micro Front-Ends						 12

Micro front-ends apply the principles of microservices to the

front-end. Unlike a single page application, this approach

promotes agility and scalability, allowing the project team to

deploy autonomously and enabling continuous delivery

for web front-ends.

Introduction

Answering Single Page Application
Challenges with Micro Front-End
Architecture

33

A monolith front-end is the result of building a powerful

and feature-rich web application, which sits on top of

the microservice architecture. Over time, the front-end

part of the application becomes huge and complex.

Developed by a separate team, it gets more difficult to

maintain. This type of application was favored before the

advent of micro front-ends.

Micro front-end is a microservice approach to front-

end web development. The idea is to break down the

web application into smaller units based on screens

representing domain-specific functionality, instead of

writing a large, monolithic front-end application.

The micro front-end application is a combination

of features owned by different independent, cross-

functional teams that have the ability to develop

end-to-end features from user interface to database. It

gives the same level of flexibility, testability, and velocity

as microservices.

How Do Micro Front-End and Single
Page Application Monoliths Differ?

Monolithic Front & Back

The Banking App Team

Fr
o

n
t-

e
n

d
W

e
b

 S
e

rv
ic

e
s

Fr
o

n
t-

e
n

d
W

e
b

 S
e

rv
ic

e
s Back-end &

DevOps Team

Front-end Team

Microservices

Aggregation layer

A
cc

o
u

n
ts

 S
e

rv
ic

e

C
re

di
t

Se
rv

ic
e

P
ay

m
e

n
ts

 S
e

rv
ic

e

O
ff

ic
e

 S
e

rv
ic

e

Fr
o

n
t-

e
n

d
W

e
b

 S
e

rv
ic

e
s

Front-end Team

Answering Single Page Application
Challenges with Micro Front-End
Architecture

4

The flexibility promised by microservices can’t be scaled

across teams (i.e., the back-end team can’t deliver

business value without the front-end being updated).

There is an overhead of a separate back-end and

front-end team, which causes the entire front-end to

be updated and retested for a change in the application

programming interface (API) of one of the services.

In a single page application, all files are bundled

together and rendered on the browser. This file size

is gigantic.

As applications grow, so do the features that need

support. With multiple teams contributing to

a monolithic application, development and release

coordination is tedious.

Newer frameworks and libraries offer considerable

performance improvements and innovations for

the front-end space. However, the onerous task of

upgrading a monolithic application and/or making it

interoperate with these new frameworks and libraries,

often compromises the ability to ship new features at

existing release rates.

Problems with Front-End Monolith

Monolithic Front-end Micro Front-ends

Accounts Service

Front-end

Credit Service

Payments Service

Office Service

Accounts Service Front-end A

Front-end B

Front-end C

Front-end D

Credit Service

Payments Service

Office Service

Answering Single Page Application
Challenges with Micro Front-End
Architecture

5

Web browsers are getting increasingly powerful and

front-end applications are handling more business

logic than ever. This brings scalability problems to

the applications as front-end teams and business

requirements grow. Since maintaining the monolith

application is expensive, web app developers have

started taking a different approach to solving the

bottleneck — the micro front-end.

Why Micro Front-Ends Matter

End-to-End teams with Micro Front-Ends

PO

BA / QA

Design / UX

Architect

Developers

Operations

Team
Accounts

PO

BA / QA

Design / UX

Architect

Developers

Operations

Team
Credit

PO

BA / QA

Design / UX

Architect

Developers

Operations

Team
Payments

PO

BA / QA

Design / UX

Architect

Developers

Operations

Team
Offers

A cross-functional team also supports the rapid growth of individual skills across the team.

End-to-End Teams with Micro Front-Ends

Answering Single Page Application
Challenges with Micro Front-End
Architecture

6

Benefits of Micro
Front-Ends
The key advantages of micro front-ends architecture

over a monolith are:

• Gives back release autonomy and time to teams

By breaking features from the monolith into separate micro

front-ends, teams enjoy increased autonomy and flexibility

when releasing products and features. Teams don’t need

regression testing for their colleagues’ changes in production.

Small changes and testing become simple.

• Independence

Individual development teams can choose their own

technology. Not having to rely on the entire codebase reduces

dependencies and scope, enabling teams to onboard and

deliver faster. This creates more time for innovation without

fear of breaking other teams’ features.

• Highly scalable and better performing web app

A loosely coupled architecture with established global

standards makes it easier to add new features or spin up

teams when needed. Since each app is fragmented into its

own micro front-end, if a single feature (one micro front-end)

on an enterprise app isn’t loading fast, it has no effect on the

performance of the rest of the application. It also makes it

possible for certain parts of a web page to load faster, allowing

users to interact with the page before all features are

loaded or needed.

7
Answering Single Page Application
Challenges with Micro Front-End
Architecture

The options to be considered are: server-side integration, build-time integration, run-time integration via iframes,

and run-time integration via script.

1. Server-Side Integration

Server-side integration is the weapon of choice for anything dynamic that should also be server-side

rendered. This method excels in perceived performance.

There are various ways of realizing server-side

composed micro front-ends. Using a layout engine like

Podium presents a scaling approach without too much

trouble. However, the dynamics of micro front-ends

may be difficult to tame with a central layout engine.

Here, approaches such as using a reverse proxy could

be more successful.

The challenge of using a reverse proxy is that the local

development setup becomes rather complicated.

Quite often, the only possibility of actually seeing the

integration live, is to deploy the micro front-end in

question, or provide some hot loading capability for

sustaining a local development environment.

The server-side integration works well for content-

heavy sites like webshops.

Which Technique Is Best for Micro
Front-End Integration?

Pros

• Best performance

• Dynamic loading

• SEO

Cons

• Framework integration

• Micro front-end isolation

• Development environment

Example of libraries and solutions:

• Project Mosaic

• Podium

User’s
browser

Assembles templates
and fragments into page

U
se

r’
s

b
ro

w
se

r
A

ss
e

m
b

le
s

te
m

p
la

te
s

an
d

fr
ag

m
e

n
ts

 in
to

 p
ag

e
U

se
r’

s
b

ro
w

se
r

A
ss

e
m

b
le

s
te

m
p

la
te

s
an

d
fr

ag
m

e
n

ts
 in

to
 p

ag
e

U
se

r’
s

b
ro

w
se

r
A

ss
e

m
b

le
s

te
m

p
la

te
s

an
d

fr
ag

m
e

n
ts

 in
to

 p
ag

e

Answering Single Page Application
Challenges with Micro Front-End
Architecture

8

https://www.mosaic9.org/
https://podium-lib.io/

2. Build-Time Integration

The simplest and most reliable technique is build-time integration. This method is reliable because at build-time, it’s

already clear how everything works and how to join the different pieces to get a single deliverable.

This kind of mechanism is as old as writing software.

Often different pieces are developed independently

at various locations, then brought together for final

assembly. Automation is vital here. The process

works best when it triggers autonomously as soon as

a piece changes.

For instance, when a single micro front-end

changes, the whole application should be rebuilt. The

number of micro front-ends might grow indefinitely,

increasing the stress on the build server. Even if it

doesn’t, constant refreshing of the whole application

could prevent caching and boost single page

application performance.

Build-time integration works well in combination with

server-side integration, or for smaller applications

where only some well-defined parts are outsourced.

One possible solution here is to use Webpack with the

module federation plug-in.

Pros

• Type checking

• Runtime optimizations

• Easy for migration

Cons

• Dynamic loading

• Build times

• Orchestration

Example of libraries and solutions:

• Lerna

• Bit

• �Webpack 5 and Module Federation

User’s
browser

Single deployable
JavaScript bundle

Answering Single Page Application
Challenges with Micro Front-End
Architecture

9

https://lerna.js.org/
https://github.com/teambit/bit
https://webpack.js.org/concepts/module-federation/

3. Run-Time Integration

3.1. Via iframe

Joining micro front-ends at runtime has many

advantages, but usually requires JavaScript. This

presents a challenge to SEO and accessibility. While

modern Google crawlers use a powerful JavaScript

engine (in fact, they use a very recent version of

Chrome to “see” the web), standard SEO rules still

mandate a quick response and rapid rendering times.

Runtime integrations often struggle here.

One exception is the inclusion of iframes. This can

be prepared on the server-side, but it requires single

elements (including their purpose and area of use) to

be known centrally.

Pros

• Strong isolation

• Full flexibility

• Web-native

Cons

• No sharing possible

• Difficult to sustain great UX

• Worst performance

Example of libraries and solutions:

• PostMate

• Microfronts

The best aspect of iframes is their isolation. This

also beats alternatives such as shadow DOM or

CSS modules, as nothing is shared with the hosting

application. Since iframes come from a dynamic source,

their content can be rendered server-side, too. This is

necessary to some degree, as resources can’t be shared

and need to be loaded multiple times.

The runtime integration via iframes works well for

pages using third-party content, where strong isolation

is required. This technique has been in use for a long

time (e.g., the first onsite PayPal integrations used it).

Many chatbots and consent solutions use it because

the provided boundaries shield one application

from another.

User’s
browserUser’s

browser

Answering Single Page Application
Challenges with Micro Front-End
Architecture

10

https://github.com/dollarshaveclub/postmate
https://github.com/eavichay/microfronts

For the runtime integration of micro front-ends, using

a plug-in mechanism enables the building of everything

easily, while choosing all the right parameters centrally.

The central location is usually called the application

shell (app shell). It loads the scripts and evaluates

their content.

While some frameworks offer great control over the

distributed API, others are only script loaders or basic

routing engines. However, all solutions in this space

focus on developer experience.

Pros

• Very dynamic

• Super flexible

• Best developer experience

Cons

• Weak isolation

• Requires JavaScript

• Efficient orchestration

Example of libraries and solutions:

• Single SPA

• Frint.js

• Luigi

3.2 Via script

This approach can give great flexibility but comes

at a cost. Interesting applications such as VS Code

have been built using a plug-in system, proving that

a combination of a powerful app shell that comes with

the majority of the UI, is as viable as a weak app shell

that only orchestrates the different micro front-ends.

Alternatively, integration via script can bring micro

front-ends in the form of web components. While

this approach does have some advocates, it also

comes with additional challenges — mostly to

backward compatibility.

Answering Single Page Application
Challenges with Micro Front-End
Architecture

11

https://single-spa.js.org/
https://frint.js.org/
https://luigi-project.io/

Considering
Micro Front-Ends
As front-end codebases continue to get bigger and

more complex, there’s a growing need for more

scalable architectures. The ability to scale software

delivery across independent, autonomous teams is

important. As is the ability to draw clear boundaries

that establish the right levels of coupling and cohesion

between technical and domain entities.

While far from the only approach, there are many

real-world cases where micro front-ends deliver these

benefits. The technique is gradually being applied to

legacy codebases as well as new ones. Whether or

not micro front-ends are the right approach for you,

we hope this will be part of a continuing trend where

front-end engineering and architecture are treated

with the seriousness that they deserve.

12
Answering Single Page Application
Challenges with Micro Front-End
Architecture

About the Author

Luis has been designing and developing high-performing, scalable and innovative

web-based applications for clients in the financial, energy and media industries for

more than 15 years. He’s fascinated by human-computer interaction and is a keen

proponent of user-experience design.

Luis Cameroon

Principle Consultant

www.luxoft.com

Luxoft, a DXC Technology Company (NYSE: DXC), is a digital strategy and software engineering firm providing bespoke technology solutions that drive

business change for customers worldwide. Luxoft uses technology to enable business transformation, enhance customer experiences, and boost

operational efficiency through its strategy, consulting, and engineering services. Luxoft combines a unique blend of engineering excellence and deep

industry expertise, specializing in automotive, financial services, travel and hospitality, healthcare, life sciences, media and telecommunications.

https://www.luxoft.com/

	Contents
	Introduction
	How Do Micro Front-End and Single Page Application Monoliths Differ?
	Problems with Front-End Monolith
	Why Micro Front-Ends Matter
	Benefits of Micro Front-Ends
	Which Technique Is Best for Micro Front-End Integration?
	Considering Micro Front-Ends

