
The agility challenge for
software-defined vehicles

Abstract

Consumer preferences in the automotive industry are
changing. Traditionally, vehicles were viewed through
the lens of their mechanical characteristics: Which car
has more horsepower, a louder sound system, larger
wheel diameter, etc. However, modern automotive
consumers increasingly prioritize intelligent vehicle
features that are enabled by advancements in software
rather than hardware. For example, customers want
intelligent driving assistance features to help them
arrive at the destination more relaxed, regardless of
the 0-60 times. Both busy workers and busy families
want to keep up with all sides of their work/life balance
while on the go, and simply having hands-free calling
in the car doesn’t cut it anymore. People want cars
to be a dependable asset that never surprises them
with an unexpected breakdown. Moreover, users want
cars that become more capable as time goes by, with
new features and improvements added through a
seamless Over-the-Air (OTA) update, rather than cars
that gradually become obsolete with each passing day.
In these examples, consumers identify the car’s value
proposition mainly in terms of intelligent features
that can only be made possible by advanced software.
In other words, the shifting consumer perspective is
heavily focused on SDVs.

In order to meet customers’ expectations, automakers
are reinventing themselves to become more agile in

delivering intelligent features throughout the life of
the vehicle. This process of reinventing is similar to the
digital transformations we’ve seen in other industries,
so we can extract useful learnings from success
stories in those domains. Also, can we adopt some of
the proven tools and methodologies for automotive
purposes? Since we’re talking about software-enabled
vehicle capabilities, the obvious place to look for such
inspiration would be the software industry.

Of course, the automotive industry is not a newbie when
it comes to software development, quite the contrary
— sophistication of automotive in-vehicle software
exceeds some of the most well-known examples from
the software industry itself. Modern cars can have over
100 million lines of software code, which is more than
Microsoft Windows or Office products (and more
than almost everything in this comparison:
visualcapitalist.com/millions-lines-of-code/).

However, in addition to being more complex,
automotive software has much stricter quality and safety
requirements, which is completely understandable given
the risks involved. Therefore, the software industry’s
favorite motto ‘move fast and break things’ (made
famous by Facebook), would be inconceivable in
automotive.

A shift in expectation

In this white paper we outline the need for a more agile way of developing software-defined vehicles (SDVs). We
consider the possibility of borrowing established methodologies from the software industry and applying them to the
automotive industry. We explore the opportunities this holds for automotive, and discuss the challenges that prevent
direct transplanting of certain techniques and approaches, such as Microservices and DevOps, from the cloud to the
in-vehicle environment. We conclude by paving the way for a potential solution to the agility challenge discussed in
this paper.

The agility challenge for software-defined vehicles | luxoft.com 2

mailto:https://www.visualcapitalist.com/millions-lines-of-code?subject=
mailto:https://en.wikipedia.org/wiki/Move_fast_and_break_things?subject=

The need to be more agile is not unique to the automotive industry — the software industry has been actively solving
the same challenge for more than 2 decades. By now, it has developed a highly effective set of approaches for dealing
with this challenge — the combination of Microservice and DevOps. Let’s look at why this combination is so effective
for cloud-based services, and then try to imagine how this could work for in-vehicle software.

How the agile challenge
was solved on the cloud

Microservices

Microservices were a logical step in the evolution of
service-oriented architectures; they allowed larger
development teams to effectively collaborate on more
complex projects. This meant new features could be
continuously delivered straight into the cloud services,
sometimes as often as multiple times per day. Contrast
that to the era of boxed software when customers had
to wait several years to get new features.

Microservices also enabled more efficient ways of
operating cloud services at higher scale. At the same
time, the cost of innovation decreased rapidly, in
accordance with the ‘economies of scale’ paradigm
(often into Zero Marginal Cost territory as evidenced
by the ‘forever free’ services such as Gmail). All told,
Microservice architectures, backed by modern cloud
technologies, allowed companies to stay relevant in the
fast-paced software industry, even in the face of quickly
changing user preferences and viral trends.

DevOps

It’s well known that DevOps methodology and
Microservice architecture go nicely together. But for
internet-facing services that were built on Microservice
architecture, DevOps was not a choice — it was a
necessity. The newfound agility of development that
was unlocked by Microservices was a double-edged
sword — yes, it resulted in faster updates, but it also
brought greater risk of destabilization from all the
changes being constantly deployed in all parts of the
Microservice application. This is akin to the folk wisdom,
“A 4-wheel-drive car will only help you get stuck farther
down into the swamp, thus complicating recovery
efforts”.

DevOps became the go-to recovery mechanism for
any Microservice system failures, either from a bad
code update that slipped past QA into production, or
from sudden spikes in popularity of a website resulting
in a flood of internet traffic (or for any other reason).
The complexity of Microservice systems quickly grew
to the point that any issues with the system required
immediate investigation by the Devs (developers)
who implemented it, as opposed to Ops — System
Operations Engineers (as was previously the case). This
is how the original DevOps, (aka ‘24/7 on-call sleeping-
with-a-pager do-not-leave-home-without-laptop’)
practice was born.

The agility challenge for software-defined vehicles | luxoft.com 3

Constrained connectivity

Cloud systems are always operated under the
assumption of full connectivity — loss of connectivity
would be considered a high-priority incident.
Connected vehicles, on the other hand, are designed to
operate normally with intermittent connectivity, or in
conditions of constrained bandwidth. This would make
it impossible to rely on a remote DevOps engineer’s
intervention every time a car experienced a software
issue. And if a car was transitioned to Microservice
architecture, software issues would be plentiful.

Size of the fleet

Let’s assume that in time, every car will have perfect,
continuous unconstrained connectivity — even in this
case, we wouldn’t be able to operate a fleet of connected
vehicles the same way as a cloud system, due to the
very large size of vehicle fleet. Let’s try to estimate the
size of a connected vehicle fleet for any of the top three
global manufacturers (which produce about 10 million
vehicles each per year). Automakers have already had
connected vehicle technology for at least 5 years, so we
can estimate the size of the fleet at 50 million vehicles
for each top manufacturer. Now let’s remember that
a modern vehicle contains over 100 small computers
called ECUs, connected into a distributed network inside
the vehicle. Therefore, the total number of hardware
devices that need to be monitored in our example fleet
exceeds 5 billion. This number is 3 orders of magnitude
greater than the largest cloud server fleet of the top
three cloud providers. Microsoft has about 100,000
engineers, most of them working on Azure cloud. How
many engineers would it take to operate a fleet 1000
times larger? Half the adult population of the USA? The
numbers are simply not feasible.

Since automotive also has the agile challenge, why not try to solve it with in-vehicle Microservices? Microservices
would bring significant agility benefits to the SDV, but unfortunately, they would also bring significant risks that we
can’t afford. Namely, Microservices can solve the agility challenge on the cloud only when combined with DevOps, but
Cloud DevOps methodology cannot be transplanted into the vehicle. There are several problems:

Let’s try the same
approach in-vehicle

The agility challenge for software-defined vehicles | luxoft.com 4

Automotive-grade quality

Even if we could (hypothetically) find enough engineers
to babysit each individual vehicle, the high standards of
automotive quality would never permit the number of
software bugs/failures/outages that are accepted in various
internet services. This goes back to the ‘move fast and break
things’ philosophy that has now spread to the farthest
corners of the software industry.

Non-elastic compute environment

Many approaches of Cloud DevOps rely on the unlimited
elasticity of compute resources in the cloud. For example,
if a cloud host experiences failure, you can just move to a
fresh one. However, the in-vehicle compute environment is
pretty much all accounted for; there are no reserves waiting.
On the bright side though, unlike a cloud system with its
unbounded characteristics, the in-vehicle environment and
its behavior can be fully understood (at least in theory).

Different security model

Security is the number one concern in connected systems,
especially in high-consequence scenarios like automotive. At
the same time, security is the area where the gap between
the cloud world and the in-vehicle world is the most evident.
The traditional model of cybersecurity relies on the fact
that our services run in physically secured datacenters —
be it public or private cloud, or even edge datacenters.
But cars are operated in environments where unfriendly
actors can potentially have physical access to the vehicle’s
computing hardware, and according to a well-known rule of
IoT security, a computer system cannot be protected against
compromise if an attacker can gain physical access to the
system’s hardware. Whereas the cloud DevOps process has
a goal of 100% protection against cyberattacks, a fleet of
SDVs must be operated under ‘assume breach’ philosophy
in which any vehicle can be compromised — it’s only a
question of how much an attacker wants to invest in the
attack. Then it becomes a matter of raising the protection
bar high enough to deter all but the most determined
attackers (such as nation-state backed entities). In any event,
a compromise of any single vehicle should not endanger the
security of the connected system as a whole. Fortunately,
there is a good body of knowledge accumulated in the
technology industry on securing IoT systems — this can be
taken as a foundation and adapted to automotive specifics.

The agility challenge for software-defined vehicles | luxoft.com 5

Hopes are high today that the SDV paradigm can unlock a new era of automotive progress rich with transformational
outcomes. However, the SDV success story can only be written if the automotive industry can solve the agility
challenge. Fortunately, this challenge has already been solved in other domains using methodologies like
Microservices and DevOps. Can the automotive industry take a page out of the software industry’s book and apply
these methodologies to SDVs? We believe so. The key could be open standards and collaborations such as our work
with SOAFEE, and our endeavor to advance an automotive-grade open technology platform for the automotive
industry with the Eclipse Foundation. Stay tuned for our next paper where we’ll introduce a new concept that
provides a positive outlook to the challenge.

The solution could be just
around the corner

The agility challenge for software-defined vehicles | luxoft.com 6

https://www.luxoft.com/pr/luxoft-joins-soafee-sig
https://www.luxoft.com/pr/luxoft-joins-soafee-sig
https://www.luxoft.com/pr/luxoft-joins-the-eclipse-foundation-to-help-accelerate-the-software-defined-vehicle-revolution

About Luxoft

Luxoft, a DXC Technology Company delivers digital advantage for software-driven organizations, leveraging domain knowledge
and software engineering capabilities. We use our industry-specific expertise and extensive partnership network to engineer
innovative products and services that generate value and shape the future of industries.

For more information, please visit luxoft.com

About the authors

As a seasoned technology leader at Luxoft, Andre has a
wealth of expertise regarding the future of mobility. In his
role as Chief Architect of Connected Mobility, he’s shaping
the landscape of software-defined vehicles by leveraging the
latest advancements in IoT, AI/ML, Digital Twins and other
exponential technologies. By bridging the gap between
cloud, edge and in-vehicle systems, Andre is revolutionizing
the way we think about transportation.

Andreas is an Automotive Consultant at Luxoft. His key
areas of interest are processes, methods and tools with
focus on digital transformation. His background ranges from
automotive hardware architectures, real time embedded
operating systems, automotive sensors and infotainment
systems development.

Andre Podnozov
Chief Architect
apodnozov@dxc.com
linkedin.com/in/andrepodnozov/

Andreas Lindenthal
Automotive Consultant, AD Architecture
andreas.lindenthal@dxc.com

© 2023 Luxoft, A DXC Technology Company. All rights reserved.

https://www.luxoft.com
mailto:apodnozov%40dxc.com?subject=
https://www.linkedin.com/in/andrepodnozov/
mailto:andreas.lindenthal%40dxc.com?subject=

